Name:_____ Date: _____

Algebra & Polynomials (A, 1, 2)

Selected Examples:

1. Factor: $x^3 + 64$

2. Find the Horizontal Asymptotes: $y = \frac{7x^2 + 3x}{8x^2 - 20}$

Practice:

Factoring (A)	1. Factor: $8x^3 - 27$		2. Factor: $4x^3 - 8x^2 - 2$	25x + 50
Solving equations (A)	3. Solve: $5x^2 - 2 = 3x$		4. Solve: $2x^2 + 12x + 13$	3 = 0
Domain (1)	5. State the domain: $y = \sqrt{x+6}$	6. State	the domain: $y = \frac{x+3}{(x-1)}$	7. State the Domain: $y = x^2 + 2$
Composition (1)	(for #8 and #9) $f(x) = 3x^2 - 7x$ g(x) = 4x + 2	8. Find	$(g\circ f)(x)$	9. Find $(f \circ g)(4)$
Inverse (1)	10. Find the inverse: $f(x) = \sqrt[3]{x^2 + 7}$			
Shifts & Stretches (1)	11. Write the equation of g(x), which is $f(x) = \sqrt{x}$ shifted 3 units down and 5 units right.			
Asymptotes (2)	12. State the vertical and horizontal asymptotes of: a. $f(x) = \frac{3x+5}{2x^2-16}$ b. $f(x) = \frac{3x^4+5}{2x^2-16}$ c. $f(x) = \frac{3x^2+5}{2x^2-16}$			
Polynomial Division (2)	13. Divide synthetically: $(5x^4 - 2x^2 + 1) \div (x + 1)$		14. Divide Synthetic $(3x^4 + 2x^3)$	cally: $-3x+1$; $(x-5)$
Descarte's Rule & RZT (2)	15. $f(x) = 3x^4 + 6x^2 - 25x - 21$ a. State the number of possible b. List all possible <i>rational ze</i>	ble negat Pros.	ive and positive real zero	os of f(x).

Name:		
Date:		

Logarithms & Exponentials (3)/ Series & Sequences (9)

Selected Examples:

1. Simplify into a single logarithm: $\frac{1}{2}[\log(x) + \log(y)] - 4\log(z)$

2. For an arithmetic sequence, $a_8 = 3$ and $a_{18} = 43$. Find a formula a_n

Practice:

Solving Exponential equations (3)	1. Solve: $4e^{2x} - 10 = 2$	2. Solve: $3^{5x+1} = 5$
Solving Logarithmic equations (3)	3. Solve: $\ln(3x+7) = \ln(24x)$	4. Solve: $\log(3x+7) + \log(x-2) = 1$
Change of Base (3)	5. Evaluate: $\log_8(20)$	6. Evaluate: $\ln_5(10)$
Log Properties (3)	7. Simplify to a single Logarithm: $2\log(x) - \log(y) + 3\log(z)$	8. Expand as a sum/difference of logarithms: $\log\left(\frac{y^2\sqrt{x}}{z^3}\right)$
Compound Interest (3)	9. Lucy invests \$400 at an annual rate of 3.5%. compounded: a. Monthly b.	What is her balance after 15 years, if the interest is Quarterly
Continuously Compounded Interest (3)	10. How long will it take an investment of \$100 continuously?) to grow to \$1250 at a rate of 7% compounded

Arithmetic Sequences (9)	11. $a_{12} = 26$ and $d = 13$ for an arithmetic sequence. Find a formula a_n	12. $a_{10} = 50$ and $a_{15} = 75$ for an arithmetic sequence. Find a formula a_n
Arithmetic Series (9)	13. Evaluate: $\sum_{i=1}^{60} 4i + 75$	14. Evaluate: $\sum_{i=3}^{500} 3i - 1$
Geometric Sequences (9)	15. $a_n = 3(2)^{n-1}$, find the first 4 terms of the	e sequence (assume n starts at 1).
Geometric Series (9)	16. Evaluate: $\sum_{i=1}^{5} 3(4)^{i}$	17. Evaluate: $\sum_{i=1}^{\infty} 2\left(\frac{1}{5}\right)^i$

Mixed Review	18. Determine the horizontal asymptote: $y = \frac{8x^5 - 3x^2}{5x^8 + 3x}$
	19. State the domain: $y = \sqrt{4-x}$.

Name:	
Date:	

Trigonometry(4), Law Sines/Cosines(6) & Polar Coordinates(10)

Selected Examples:

1. Solve for x on (0, 2π]: $6\sin^2 x = 3$

2. Convert to Rectangular form: $\left(6, \frac{-2\pi}{3}\right)$

Practice:

Basic Trig (4)	1. Evaluate (in simplest radical form): $\cos\left(\frac{5\pi}{6}\right)$	2. Evaluate (in simplest radical form): $sin(-135^{\circ})$
Basic Trig (4)	3. Find 2 values of θ , such that $0 < \theta \le 360^{\circ}$: tan	$\theta = -2.7475$
Trig Graphs (4)	4. State the amplitude, period and shifts of: y	$= 3 - 4\cos(2x + \pi)$
Solving equations (5)	5. Solve on (0, 2π]: $2\cos x - \sqrt{3} = 0$	6. Solve on (0, 360°]: $2\sin^2 x - 5\sin x = -3$
Trig Formulas (5)	7. $\cos u = -\frac{4}{7}$, $\tan u > 0$ find: $\cos 2u$ and $\sin 2u$ (in simplest radical form)	8. A = 330° and B = 45°, evaluate: sin(A + B) and cos(A - B) (in simplest radical form)

Law of Sines & Cosines (6)	9. Given a triangle with a=18, b=23, and B=97°, find C.
Law of Sines & Cosines (6)	10. Given a triangle with sides a = 19, b=4, and c=22, find C.
Area of a triangle (6)	11. Find the area of a triangle with side lengths {16, 37, 32}.
Area of a triangle (6)	12. Find the area of a triangle such that c=21.49, a=91.6, and B=37 $^{\circ}$.

Converting to Polar (10)	13. Convert $(-2, -\sqrt{3})$ into polar form.	14. Convert $(-\sqrt{6},\sqrt{2})$ into polar form.
Converting to Rectangular (10)	15. Convert $(3, -\pi)$ into rectangular form	16. Convert to rectangular form: $\left(-4, \frac{2\pi}{3}\right)$

	17. List the possible rational zeros of: $f(x) = 6x^3 - 3x^2 + x - 7$
Mixed Review	18. For the arithmetic sequence, $a_4 = 15$ and $a_9 = 65$. Find a formula for a_n .

Name:_____ Date: _____

Vectors (6) & Complex Numbers (6)

Selected Examples:

1. Vector **v** has initial point (-4, 8) and final point (3, 2). Express **v** in linear combination form.

2. Find a vector in the direction of **v** with a magnitude of 5.

3. Use Demoivre's Theorem to evaluate: $(3-3i)^4$.

-

Practice:

Г

Vectors - Component Form (6)	1. Vector w has initial point (3, 7) and final point (3, -2). Write vector w in <i>component</i> form.
Vectors - Linear Combination Form (6)	2. Vector w has initial point (2, -1) and final point (4, 1). Write vector w as a <i>linear combination</i> of the unit vectors i and j .
Vectors - Trigonometric Form (6)	3. Vector v =<-3,3>. Write v in <i>trigonometric</i> form.
Unit Vectors (6)	4. Vector $\mathbf{v} = 4\mathbf{i} - 10\mathbf{j}$. Find a vector in the direction of \mathbf{v} with a magnitude of 8.

Complex Numbers – Trigonometric Form (6)	5. Write the complex number $z = 2(\cos(270^\circ) + i\sin(270^\circ))$ in standard form.
Complex Numbers – Trigonometric Form (6)	6. Write the complex number z = -5 +4 <i>i</i> in <i>trigonometric</i> form.
DeMoivre's Theorem – Powers (6)	7. Use DeMoivre's Theorem to evaluate $(3+3i)^8$ in standard form.
DeMoivre's Theorem – Roots (6)	8. Find the cube roots of -27 <i>i</i> .

Mixed Review	9. Factor: $6x^3 - x^2 + 18x - 3$
	10. Solve for x on [0, 2π): $\cos^3 x - \cos x = 0$
	11. Synthetically divide: $(8x^4 - 4x^2 + 3x - 1) \div (x - 6)$
	12. Simplify into a single logarithm: $8\ln(x) - 2(\ln(x) + 3\ln(y))$
	13. Evaluate: a. $\sum_{i=1}^{\infty} (3/4)^i$ b. $\sum_{i=5}^{40} 8i - 5$